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Abstract. We present a full account of the two-loop electroweak, two-photon mediated short-distance dis-
persive KL → µ+µ− decay amplitude. QCD corrections change the sign of this amplitude and reduce it
by an order of magnitude. Thus, the QCD-corrected two-loop amplitude represents only a small fraction
(with the central value of 5%) of the one-loop weak short-distance contribution, and has the same sign.
In combination with a recent measurement, the standard-model prediction of the short-distance ampli-
tude, completed in this paper, provides a constraint on the otherwise uncertain long-distance dispersive
amplitude.

1 Introduction

Even before it was measured, the KL → µ+µ− decay had
provided valuable insight into the understanding of weak
interactions. The non-observation of the KL → µ+µ− de-
cay at a rate comparable with that of K+ → µ+νµ showed
the importance of the GIM mechanism [1]: the invention
of the charmed quark made possible the necessary sup-
pression of the amplitude. Now, equipped with the results
of the new measurements and in view of the forthcoming
data, we take this important amplitude under scrutiny.

The amplitudes in a free-quark calculation [2] (Fig. 1a
and Fig. 1b) represented by one-loop (1L) W-box and
Z-exchange diagrams, respectively, exhibited a fortuitous
cancellation of the leading-order contributions. Therefore,
as shown by Voloshin and Shabalin [3], one was addressed
to consider the two-loop (2L) diagrams corresponding to
Fig. 1c as a potentially important light-quark contribution.

The contributions shown in Fig. 1c were brought to
attention by the measurements [4,5] which indicated that
the absorptive part of the diagram in Fig. 1c dominated
the rate of the KL → µ+µ− decay. Namely, normalizing
the amplitudes to the branching ratio

B(KL → µ+µ−) = |ReA|2 + |ImA|2 , (1)

and comparing it with the most recent BNL measurement
[4]

B(KL → µ+µ−) = (6.86 ± 0.37) × 10−9 , (2)

exhibits the saturation by the absorptive (ImA) part. It
completely dominates the KL → γγ → µ+µ− contribu-
tion, giving the so-called unitarity bound [6]

Babs = (6.8 ± 0.3) × 10−9 , (3)
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Fig. 1. Possible mechanisms for KL → µ+µ−

corresponding to ImA = 8.25×10−5. Comparing the mea-
surement (2) with the unitarity bound (3), there is room
for a total ReA of order 2×10−5. Thus, the total real part
of the amplitude, being the sum of short-distance (SD)
and long-distance (LD) dispersive contributions,

ReA = ASD + ALD , (4)

must be relatively small compared with the absorptive
part of the amplitude, as illustrated in Fig. 2. Such a small
total dispersive amplitude can be realized either when the
SD and LD parts are both small (Fig. 2a) or by partial
cancellation between these two parts (Fig. 2b). Notably,
the opposite sign of SD and LD contributions (as favoured
by some calculations) leaves more space for an additional
SD contribution. If the SD amplitude is found to be small,
there is no room for a large LD dispersive amplitude ALD.
This leads us to reconsider previous SD calculations [3,7]
in the next section.

Frequently, the SD part has been identified as the weak
contribution represented by the one-loop W-box and Z-
exchange diagrams of Figs. 1a and 1b. This one-loop con-
tribution A1L = AFig. 1a + AFig. 1b is dominated by the
t-quark in the loop (proportional to the small KM-factor
λt), and the inclusion of QCD corrections [8,9] does not
change this amplitude essentially. In the present paper
we stress that the diagram of Fig. 1c (∼ α2

emGF) leads
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Fig. 2. Schematic Argand diagram of the possible interplay of
the amplitudes under consideration

to the same SD operator as that of preceding two dia-
grams (proportional to G2

F). As already pointed out in [3,
10], the corresponding two-loop diagrams with two inter-
mediate virtual photons have a short-distance part A2L
(contained in AFig. 1c = ALD + A2L) picking up a poten-
tially sizable contribution from relatively high-momentum
photons. The total SD amplitude is

ASD = A1L + A2L .

By exploring the contribution from Fig. 1c leading to the
A2L amplitude, we isolate the strongly model-dependent
LD dispersive piece. Section 2 is devoted to the calculation
of the dispersive two-loop SD amplitude A2L. In Sect. 3
we conclude that this amplitude enables us to predict the
possible range of the LD dispersive amplitude ALD, the
knowledge of which has been urged by studies of the re-
lated rare kaon decays [11].

2 Dispersive two-loop SD contribution

A complete treatment of the two-loop amplitude consid-
ered here is a missing piece in the literature. There is an
enlightening feature of the diagram in Fig. 1c: the loop-
momentum of the photon in Fig. 1c enables us to control
the distinction between the LD and SD contributions from
this diagram. We approach this problem of separating the
two contributions by studying the SD piece, defined by the
photon momenta above some infrared cut-off of the order
of some hadronic scale Λ. A sensible SD amplitude should
have a mild dependence on the choice of the particular
value of Λ. We calculate the (two-loop) quark process

sd̄ → γγ → µµ̄ , (5)

for which we obtain a result proportional to the left-hand-
ed quark current for the s → d transition. We present the
main results of the calculation of the full set of 44 elec-
troweak (EW) two-loop diagrams in the ’t Hooft-Feynman
gauge. It is convenient to distinguish between three sets of
diagrams, depending on one-particle irreducible subloops
– the A-diagrams given by s → dγγ transitions (of the
type shown in Fig. 3), the B-diagrams given by the s → dγ
transition (illustrated in Fig. 4) and the C-diagrams given
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Fig. 3. The dominant contributions to the s → dγγ induced
2L diagrams: A1 for the (c, u) quarks in the loop a; A3 for the
(t, c) quarks in the loop b
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Fig. 4. The dominant B1 contribution to the s → dγ induced
2L diagrams
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Fig. 5. A genuine QCD contribution to s → dµ+µ−, induced
by the s → d self-penguin transition

by the non-diagonal s → d transition (shown in Fig. 5).
We stress that the s → dγγ electroweak insertions are

finite, whereas the divergent s → dγ and s → d inser-
tions require a proper regularization. For the external light
quarks at hand, we have used the on-shell subtraction in
the limit of vanishing external 4-momenta. The structure
for C-diagrams corresponds to the s → d amplitude regu-
larized to be zero at the mass shells of the s- and d-quarks
[12], in the limit ms,d → 0, in which we work.

After regularization, the effective s → dγγ (A-transi-
tion), s → dγ (B-transition) and s → d (C-transition)
have the structures

A : εµνσρkσd̄γρLs , B : (gµρk2 − kµkρ)d̄γρLs ,

C : d̄(γ · k)3Ls , (6)

where k is the photon-loop momentum (which for B- and
C-diagrams coincides with the s- or d-quark momentum
inside the loop). After regularization, all three types of di-
agrams are internally gauge invariant with respect to QED
when diagrams with crossed photons are added. Other
structures, besides those in (6), are present for (A) s →
dγγ and (B) s → dγ diagrams, but do not contribute
to the two-loop quark process (5) when diagrams with
crossed and uncrossed photons are summed.

The two-loop amplitude resulting from the A, B and
C subloops in (6) acquires the form

Mq
2γ =

iGF

2
√

2
α2

π2 λq {Aq + Bq + Cq} (d̄γβLs)(ūγβγ5v) ,

(7)
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Table 1. The pure electroweak light-quark (c, u) and heavy-quark (t, c) 2-
loop results. The input values are mt=173 GeV, mc = 1.5 GeV and mu

replaced by the IR cut-off Λ of 0.7 or 0.9 GeV (corresponding to the range
considered in (18)). The values in the last row are obtained by multiplying by
λu = 0.215 or λt ' 2×10−4, and should be compared with |Aexpt| ' |ImA| =√

Babs = 8.25 × 10−5. The one-loop (1L) SD contribution corresponds to a
ReA (see (19)) of the order −3.5 × 10−5

Dominant Pure EW Dominant Pure EW
(c, u) diagram Λ = 0.7 Λ = 0.9 (t, c) diagram Λ = 0.7 Λ = 0.9

A1 1.86 1.22 A3 23.8 22.7
A total 1.90 1.25 A total 27.1 26.4

B1 1.70 1.04 B1 20.6 19.1
B total 1.70 1.03 B total 15.6 14.2
Total 3.59 2.28 Total 42.7 40.7

Re A/10−5 1.55 0.98 Re A/10−5 0.017 0.016

which is proportional to the same operator as that ap-
pearing in the one-loop amplitude [8,9]. Summing over
the quark flavours (q = u, c, t) in the loop gives us a gen-
eral amplitude as

M(sd̄ → µµ̄) =
∑

q

λqMq

= λu(Mu − Mc) + λt(Mt − Mc)

= −λuM(c,u) + λtM(t,c) , (8)

explicitly exposing the GIM mechanism (the λq’s are the
appropriate KM factors). After embedding the sd̄ (ds̄) in
the meson K̄0 (K0), the physical CP-conserving ampli-
tude takes the form

A(KL → µµ̄)CP-cons = −λuA(c,u) + ReλtA(t,c) . (9)

For the light quarks (q = c, u), diagrams A1 (Fig. 3a)
and B1 (Fig. 4) dominate completely (and are therefore
under scrutiny in Table 1), the other diagrams being sup-
pressed by an extra factor m2

c/M
2
W after the GIM mech-

anism has been taken into account. For the heavy quark
(t) in the loop, such a suppression is of course absent,
and we a priori have to consider all diagrams. It turns out
that then the largest contribution among A-diagrams is
A3 (Fig. 3b), and among B-diagrams the largest is again
B1. Both in the light- and heavy-quark cases there are
also the contributions from the non-diagonal s → d self-
energy (C-diagrams). Being negligible in the pure elec-
troweak case (suppressed by m2

c/M
2
W for light quarks after

GIM), the off-diagonal self-energy contribution becomes
potentially unsuppressed (∼ αs lnmc) when perturbative
QCD is switched on [13] (Fig. 5).

2.1 Pure electroweak results

Let us first display the pure electroweak (EW) results in or-
der to keep contact with the early calculation by Voloshin
and Shabalin [3]. We have calculated all the contributions
numerically, the results of the dominating ones being pre-
sented in Table 1. In addition, the analytical expressions

can be obtained in the light-quark (u, c) case. Let us dis-
play the analytic forms for the leading A1 and B1 ampli-
tudes which reproduce those obtained previously [3]. Our
calculation shows that, for m2 � M2

W , the leading log-
arithmic (LL) contribution in the pure electroweak case
is

A1LL = −2
3

[
ln

M2
W

Λ2 − 2 ln
m2

Λ2

]
, (10)

where Λ is the infrared cut-off, defined above. In this way
we avoid integrals over low photon momenta, which cor-
respond to some LD contributions. For the amplitude B1,
we obtain the following LL result for the single quark loop
(for m2 � M2

W ):

B1LL = −4
9

[
1
2
(ln

M2
W

Λ2 )2 − 1
2
(ln

m2

Λ2 )2

+
5
6

ln
M2

W

m2 − 5
6

ln
m2

Λ2

]
. (11)

Taken at face value, the expressions (10) and (11) are the
result for the c-quark case (m = mc). The correspond-
ing u-quark contribution is obtained by the replacement
mu → Λ. These results conform to [3] after the GIM mech-
anism has been taken into account.

As a new contribution to the existing literature, we
have also performed the 2L calculation of the electroweak
diagrams for the heavy quarks (q = t, c) in the loop. In
this case, the dominant contributions are A3 (Fig. 3b)
and B1 (Fig. 4). However, these are associated with the
small KM factor λt and are therefore suppressed. Table 1
displays only these dominant amplitudes and the total am-
plitudes, a full account being relegated to a more detailed
publication [14]. This table also illustrates a mild sensi-
tivity of the dominant light-quark electroweak amplitudes
A1 and B1 to the IR cut-off Λ. As we have also displayed
the total amplitude, this table illustrates to what degree
the indicated contributions are dominant within the full
set of the pure EW diagrams. The agreement between the
numerical (A1 and B1) and the analytical LL results (10)
and (11), after performing the GIM procedure, is expli-
cated by the corresponding rows of Table 2. The last row
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of Table 1, normalized to the measured amplitude, shows
the largeness of the net EW contribution. We observe that
such a large pure electroweak 2L contribution would have
decreased the one loop amplitude [9] substantially.

2.2 QCD corrections

There are some subtleties in performing QCD corrections
to the two-loop diagrams considered. Although the gluon
corrections pertain to the quark loop, the highly off-shell
photons closing the other (quark-lepton) loop control the
SD regime of the two-loop amplitude as a whole. In gen-
eral, there is up to one log per loop, as exemplified by the
B1-term in (11) related to Fig. 4.

There is a suitable prescription introduced in [8,15]
and applied by other groups [16–18] for handling the lead-
ing QCD corrections. Using this prescription, one can
write the amplitude as an integral over virtual quark loop
momenta. In the problem considered, we have to decode
the 2-loop momentum flow in order to extract the lead-
ing logarithmic structure, which we then sum using the
renormalization-group technique. Thereby, we refer to the
building blocks considered previously – the electromag-
netic penguin of [19] (now appearing in the B1 amplitude),
the QCD corrections to the quark-loop of Fig. 3a [20] and
to a very recent treatment of the self-penguin [21]. Let us
present this in more detail.

We start by demonstrating the QCD corrections to the
c- and u-quark loops of A-diagrams in Table 2. One first
hunts the leading log which should correspond to the A1-
term in (10). This result can be understood from the result
of the previous sd̄ → γγ calculation [20], which consisted
of two terms dominated at the scales MW and m, respec-
tively. Moreover, these two terms had the relative weights
1 and −2 , respectively. When this sd̄ → γγ amplitude
is inserted in to the two-loop diagram for sd̄ → µµ̄, we
gain one logarithm. Since the two terms in (10) stem from
the loop integrals dominated by the momenta at M2

W and
m2, respectively, the QCD-corrected amplitude acquires
the form

A1QCD
LL = −2

3
η1(M2

W ) ln
M2

W

Λ2 +
4
3
η1(m2) ln

m2

Λ2 , (12)

which in principle agrees with [3] and disagrees with [7].
Here, the QCD coefficient η1 reflects the colour-singlet
nature of the photonic part of the diagram, and is given
by

η1(q2) = 2c+(q2) − c−(q2) , (13)

where c± are the Wilson coefficients of the 4-quark oper-
ators O± in the effective ∆S = 1 Lagrangian of [22]. In
the leading logarithmic approximation they are given by

c±(q2) =
[

αs(q2)
αs(M2

W )

]a±/b

, (14)

where a+ = −2 and a− = 4 are the anomalous dimen-
sions and b = 11 − 2Nf/3, Nf being the number of active
flavours. In contradistinction to the numerically favourable

and stable colour-octet factor η8 = (c+ + c−)/2, the
singlet coefficient (13) is rather sensitive to the choice of
ΛQCD, with a notable switch of the sign [15,17] for q2 at
the scale of a few GeV2. Combining the u- and c-quark
contributions by taking into account the GIM mechanism
(see (8)), only the second term in (12) survives.

The B1 amplitude in (11) can be understood in terms
of the electromagnetic penguin subloop, which is, within
the LL expansion, proportional to

ln(
M2

W

m2 ) − 5
6

for k2 < m2 < M2
W ,

ln(
M2

W

k2 ) +
5
6

for m2 < k2 < M2
W , (15)

where k is the momentum of virtual photons. Inserting
this subloop into the next loop, we gain one logarithm (in
particular, ln → ln2/2). Hence the log2 form in the second
term in (11), which leads to the QCD-corrected amplitude
expressed in an integral form as

B1QCD
LL = −4

9

[∫ M2
W

m2

dp2

p2 η1(p2)
(

ln
p2

Λ2 +
5
6

)

− 5
6
η1(m2) ln

m2

Λ2

]
. (16)

Again, the expressions (12) and (16) apply directly to the
c-quark contribution, the u-quark contribution being ob-
tained by making the replacement m → Λ. This means
that when taking into account the GIM mechanism, the
integral in (16) will run from Λ2 to m2

c . The net result of
the QCD dressing is similar to that for the A1 diagram: a
suppressed amplitude with a change of sign.

The C-contribution stemming from the QCD-induced
self-penguin (SP ) in Fig. 5. might also be interesting. As
opposed to A1 and B1 contributions it is not suppressed
by the colour singlet factor η1, but contains the numeri-
cally favourable colour octet factor η8. It is, however, sup-
pressed by αs/π. For the m = mc case, we obtain to all
orders in QCD

CQCD
LL =

7
162

[∫ M2
W

m2

dp2

p2 ρ(p2)
[
1
2
(ln

p2

Λ2 )2

+ (
5
6

+
25
21

) ln
p2

Λ2

]
− 5

6
ρ(m2)

1
2
(ln

m2

Λ2 )2
]
, (17)

where ρ(p2) = η8(p2)αs(p2)/π. In addition, 7/162 is an
overall loop factor, and the terms 5/6 have the same origin
as in (15) and (16). The u-quark contribution is again
obtained by making the replacement m → Λ.

The light-quark approximation (m2 � M2
W ) is used

in (17). For an arbitrary quark mass, needed to treat the
heavy top in the loop, the calculations are much more
difficult [21]. We have done an estimate and found that
the top-quark contribution is roughly 10 % of the charm-
quark contribution (taking into account that αs at mt is
about 1/3 of αs at mc.).
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Table 2. The anatomy of QCD corrections: the exact EW 2-loop calculation is com-
pared with the LL values and with the RGE summed LL QCD corrections. The input
values are the same as in Table 1, with the IR cut-off specified at Λ=0.83 GeV and with
αs(MZ) = 0.118 [23]. Correspondence with the empirical value can be made using the
conversion factors provided by the last row of Table 1

EW + SD QCD EW + SD QCD

c-loop u-loop GIM (c − u) t-loop c-loop GIM (t − c)

A1 -2.14 -3.57 1.42 A3 -17.4 -40.4 23.0

A1LL -4.52 -6.09 1.58 A3LL -22.3 -18.3 -4.0

A1QCD
LL -6.19 -6.09 -0.10 A3QCD

LL -22.3 -18.3 -4.0

B1 -20.4 -21.6 1.24 B1 -0.8 -20.4 19.6

B1LL -20.8 -22.0 1.19 B1LL -2.0 -20.8 18.8

B1QCD
LL -14.9 -14.7 -0.23 B1QCD

LL -2.0 -14.9 12.9

C -0.61 -0.61 3 × 10−3 C -0.52 -0.61 0.09

CSP
LL 0.46 0.47 -0.01 |CSP

LL | < 0.2 0.47 < 0.7

CQCD
LL 0.47 0.48 -0.01 |CQCD

LL | < 0.2 0.47 < 0.7

Table 2 displays a detailed structure of the dominant
amplitudes from Table 1, before and after applying the
GIM mechanism: the first, the second, and the third block
of the table display the A, B, and C contributions, re-
spectively. In the third block, CSP

LL and CQCD
LL refer to the

bare and dressed self-penguin contributions, respectively,
whereas C refers to the negligible pure electroweak (EW)
contribution. Therefore, CSP

LL is different from C. As a cu-
riosity, we have found that the latter has a peculiar GIM
cancellation: there is an exact cancellation between the
c-quark contribution for mc → 0 and the t-quark contri-
bution for mt → ∞. As a result, C is not so GIM-relaxed
as expected for a heavy-quark case (t, c).

3 Conclusions

In this paper we have focused on the 2-loop (2L) contri-
butions, leading to the typical SD local operator for the
sd̄ → γγ → µ+µ− quark transition but also having a
LD (soft-photon) range. Our approach starts from the SD
side, whereby an infrared (IR) cut-off of virtual photons
sets in. We contrast the SD contribution with the com-
plementary LD ones, which have to be calculated using
other methods, and are rather model dependent at the
present stage. The numerically important 2L pure elec-
troweak SD contributions are due to the light (u, c) quarks
in the loop. Besides completing the previous calculation
for light quarks, we have also considered the 2L diagrams
including the heavy (c, t) quarks. A large number of elec-
troweak diagrams may compensate for a small CKM fac-
tor, and one might expect non-negligible effects. However,
the actual calculation shows that the various amplitudes
have different signs, and taking into account the smallness
of λt, the heavy-quark contribution is negligible.

Next, we have shown the importance of the SD QCD
corrections for the 2L diagrams, summarized in Fig. 6.
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−1

0

1

2

0.7 0.8 0.9 1.0

A2L

EW

A1L

Λ/GeVA2L

EW+QCD

Fig. 6. QCD does three things to the EW 2L amplitude: i)
smoothens the Λ-dependence (making the SD extraction better
defined), ii) changes the sign (making it coherent to the 1L
amplitude), and iii) suppresses it to large extent

Inclusion of these QCD corrections appears to be sub-
tle and more dramatic than it was the case for the 1L
diagrams. Two decades ago there was a controversy con-
cerning QCD corrections to these 1L diagrams. Reference
[8] resolved it by an adequate treatment of the loop inte-
grals. Our results for SD corrections to the 2L diagrams
are shown in Table 2. The short-distance QCD correc-
tions suppress the part of the SD 2γ amplitude which is
electroweakly dominant before inclusion of QCD correc-
tions. The basic reason for this is the behaviour of the
η1 = (2c+ − c−) QCD coefficient. In particular, the A1
and B1 amplitudes are suppressed to a large extent, and
do not anymore interfere destructively with the 1L SD
amplitude of [9]. Without this suppression, the scenario
of Fig. 2a would appear as a more likely one.
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We should stress that in the treatment of the 2L am-
plitude we have performed QCD corrections in the lead-
ing logarithmic approximation by using (14), while the
1L amplitude was treated in the next to leading (NLO)
approximation in [9].

To summarize, we have found a modest light-quark
2L contribution stemming from intermediate virtual pho-
tons having relatively high momentum. Introducing the
error bars corresponding to Λ in the range 0.7–0.9 GeV,
and a more essential one from empirical uncertainty in αs

(corresponding to Λ
(5)
QCD in the range 150–250 MeV), we

obtain

−0.38 × 10−5 ≤ A2L ≤ −0.001 × 10−5 , (18)

This has the same sign and, for central values, corresponds
to 5% of A1L [9],

−4.4 × 10−5 ≤ A1L ≤ −2.6 × 10−5 , (19)

where the uncertainty mainly reflects the poor knowl-
edge of λt. Although the 1L and 2L contributions are not
treated on an equal footing (NLO versus LL QCD correc-
tions), this result still enables us to estimate the size of
ALD from (4). Referring to our comments below (3), and
allowing for a |ReA| ≤ 2.7 × 10−5, we find the following
allowed range for ALD:

−0.1 × 10−5 ≤ ALD ≤ 7.5 × 10−5 . (20)

Thus, having a dispersive LD part ALD of the size com-
parable with the absorptive part [24] is still not ruled out
completely.

The two vector-meson dominance calculations for the
LD amplitude considered as the referent calculations in
[4] have basically opposite signs:

−2.9 × 10−5 ≤ ALD ≤ 0.5 × 10−5 [25] ,

0.27 × 10−5 ≤ ALD ≤ 4.7 × 10−5 [26] .

On the basis of the inferred relative sign between 1L
and 2L contributions, [7], attempted to discriminate be-
tween the two LD calculations quoted above. (They favour-
ed [25], and disfavoured [26] as the one ascribing opposite
signs to SD and LD.) In the last of their papers [7] they
even concluded that the BNL measurements [4] were in
conflict with the standard model.

We have found that these conclusions are doubtful,
since they are based on an erroneous SD extension to the
LD momentum region. In our opinion, [7] misidentifies
what (according to the calculational method employed)
should be their SD amplitude A2L, with ALD. In our treat-
ment (see Sect. 2) we have avoided the forbidden low-
momentum region by introducing the infrared cut-off Λ of
the order of the ρ-mass. We have demonstrated that there
is a subtle QCD suppression of the originally quite sizable
SD EW 2L amplitude. Therefore, a real K → γγ → µ+µ−
amplitude of a considerable size given in (20) correspond-
ing to low γ-momenta (∼ Λ and below), is still allowed.
This might be used as a consistency check for the methods
of the type employed in [25,26].

Taking into account the difficulties inherent to the es-
timates of the LD amplitude, it is welcome to arrive at the
constraint (20). Accordingly, provided the sign of ALD are
correctly given in [4], the BNL experiment combined with
the standard-model calculation tends to favour the result
of [26]. In this way, the scenario of Fig. 2b seems to be pre-
ferred by the standard model. Provided that the beyond-
standard-model effects are represented by the relatively
small SD amplitudes, this scenario hinders the possibility
of recovering such effects in the KL → µ+µ− decay. The
forthcoming data from KL → µ+µ− measurements [27]
will further test the conclusions of the present paper.

Acknowledgements. Two of us (K.K. and I.P.) gratefully ac-
knowledge the partial support of the EU contract CI1*-CT91-
0893 (HSMU) and the hospitality of the Physics Department
of the Bielefeld University. One of us (I.P.) would also like
to acknowledge the hospitality of the Department of Physics
in Oslo, and to thank the Norwegian Research Council for a
traveling grant.

References

1. S.L. Glashow, J. Iliopoulos and L. Maiani, Phys. Rev. D2
(1970) 1285

2. M.K. Gaillard and B.W. Lee, Phys. Rev. D10 (1974) 897
3. M.B. Voloshin and E.P. Shabalin, JETP Lett. 23 (1976)

107 [Pis’ma Zh. Eksp. Teor. Fiz. 23 (1976) 123]
4. A.P. Heinson et al. (BNL E791), Phys. Rev. D51 (1995)

985
5. T. Akagi et al., Phys. Rev. Lett. 67 (1991) 2618
6. L.M. Sehgal, Phys. Rev. 183 (1969) 1511; B.R. Martin,

E. de Rafael and J. Smith, Phys. Rev. D2 (1970) 179
7. A.M. Gvozdev, N.V. Mikheev and L.A. Vassilevskaya,

Phys. Lett. B274 (1992) 205; Sov. J. Nucl. Phys. 53
(1991) 1030 [Yad. Fiz. 53 (1991) 1682]; hep-ph/9511366

8. A.I. Vainstein, V.I. Zakharov, V.A. Novikov and M.A.
Shifman, Yad. Fiz. 23 (1976) 1024 [Sov. J. Nucl. Phys.
23 (1976) 540]; V.A. Novikov, M.A. Shifman, A.I. Vain-
stein and V.I. Zakharov, Phys. Rev. D16 (1977) 223

9. G. Buchalla, A.J. Buras, Nucl. Phys. B412 (1994) 106; G.
Buchalla, A.J. Buras and M.E. Lautenbacher, Rev. Mod.
Phys. 68 (1996) 1125; G. Buchalla, hep-ph/9701377

10. R.E. Shrock and M.B. Voloshin, Phys. Lett. B87 (1979)
375

11. J.F. Donoghue and F. Gabbiani, Phys. Rev. D51 (1995)
2187; G. D’Ambrosio and J. Portolés, hep-ph/9610244, to
apear in Nucl. Phys. B

12. E.P. Shabalin, Yad. Fiz. 32 (1980) 249 [Sov. J. Nucl. Phys.
32 (1980) 129]

13. E.P. Shabalin, ITEP 86-112; B. Guberina, R.D. Peccei and
I. Picek, Phys. Lett. B188 (1987) 258; J.O. Eeg, Phys.
Lett. B196 (1987) 87
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